76 research outputs found

    A comparison of population types used for QTL mapping in Arabidopsis thaliana

    Get PDF
    In Arabidopsis, a variety of mapping populations have been used for the detection of quantitative trait loci (QTLs) responsible for natural variation. In this study, we presentan overview of the advantages and disadvantages of the different types of populations used. To do this, we compare the results of both experimental and natural populations for the commonly analysed trait flowering time. It is expected that genome wide association (GWA) mapping will be an increasingly important tool for QTL mapping because of the high allelic richness and mapping resolution in natural populations. In Arabidopsis, GWA mapping becomes ever more facilitated by the increasing availability of re-sequenced genomes of many accessions. However, specifically designed mapping populations such as recombinant inbred lines and near isogenic lines will remain important. The high QTL detection power of such experimental populations can identify spurious GWA associations, and their unique genomic structure is superior for investigating the role of low-frequency alleles. Future QTL studies will therefore benefit from a combined approach of GWA and classical linkage analysis

    Advances in Genetical Genomics of Plants

    Get PDF
    Natural variation provides a valuable resource to study the genetic regulation of quantitative traits. In quantitative trait locus (QTL) analyses this variation, captured in segregating mapping populations, is used to identify the genomic regions affecting these traits. The identification of the causal genes underlying QTLs is a major challenge for which the detection of gene expression differences is of major importance. By combining genetics with large scale expression profiling (i.e. genetical genomics), resulting in expression QTLs (eQTLs), great progress can be made in connecting phenotypic variation to genotypic diversity. In this review we discuss examples from human, mouse, Drosophila, yeast and plant research to illustrate the advances in genetical genomics, with a focus on understanding the regulatory mechanisms underlying natural variation. With their tolerance to inbreeding, short generation time and ease to generate large families, plants are ideal subjects to test new concepts in genetics. The comprehensive resources which are available for Arabidopsis make it a favorite model plant but genetical genomics also found its way to important crop species like rice, barley and wheat. We discuss eQTL profiling with respect to cis and trans regulation and show how combined studies with other ‘omics’ technologies, such as metabolomics and proteomics may further augment current information on transcriptional, translational and metabolomic signaling pathways and enable reconstruction of detailed regulatory networks. The fast developments in the ‘omics’ area will offer great potential for genetical genomics to elucidate the genotype-phenotype relationships for both fundamental and applied research

    Identification of seed-related QTL in Brassica rapa

    Get PDF
    To reveal the genetic variation, and loci involved, for a range of seed-related traits, a new F2 mapping population was developed by crossing Brassica rapa ssp. parachinensis L58 (CaiXin) with B. rapa ssp. trilocularis R-o-18 (spring oil seed), both rapid flowering and self-compatible. A linkage map was constructed using 97 AFLPs and 21 SSRs, covering a map distance of 757 cM with an average resolution of 6.4 cM, and 13 quantitative trait loci (QTL) were detected for nine traits. A strong seed colour QTL (LOD 26) co-localized with QTL for seed size (LOD 7), seed weight (LOD 4.6), seed oil content (LOD 6.6), number of siliques (LOD 3) and number of seeds per silique (LOD 3). There was only a significant positive correlation between seed colour and seed oil content in the yellow coloured classes. Seed coat colour and seed size were controlled by the maternal plant genotype. Plants with more siliques tended to have more, but smaller, seeds and higher seed oil content. Seed colour and seed oil content appeared to be controlled by two closely linked loci in repulsion phase. Thus, it may not always be advantageous to select for yellow-seededness when breeding for high seed oil content in Brassicas

    Drought response in Arabidopsis displays synergistic coordination between stems and leaves

    Get PDF
    The synergy between drought-responsive traits across different organs is crucial in the whole-plant mechanism influencing drought resilience. These organ interactions, however, are poorly understood, limiting our understanding of drought response strategies at the whole-plant level. Therefore, we need more integrative studies, especially on herbaceous species that represent many important food crops but remain underexplored in their drought response. We investigated inflorescence stems and rosette leaves of six Arabidopsis thaliana genotypes with contrasting drought tolerance, and combined anatomical observations with hydraulic measurements and gene expression studies to assess differences in drought response. The soc1ful double mutant was the most drought-tolerant genotype based on its synergistic combination of low stomatal conductance, largest stomatal safety margin, more stable leaf water potential during non-watering, reduced transcript levels of drought stress marker genes, and reduced loss of chlorophyll content in leaves, in combination with stems showing the highest embolism resistance, most pronounced lignification, and thickest intervessel pit membranes. In contrast, the most sensitive Cvi ecotype shows the opposite extreme of the same set of traits. The remaining four genotypes show variations in this drought syndrome. Our results reveal that anatomical, ecophysiological, and molecular adaptations across organs are intertwined, and multiple (differentially combined) strategies can be applied to acquire a certain level of drought tolerance.NWOPlant sciencesNaturali

    Sustainable bioenergy for climate mitigation: Developing drought-tolerant trees and grasses

    Get PDF
    \u2022 Background and Aims Bioenergy crops are central to climate mitigation strategies that utilize biogenic carbon, such as BECCS (bioenergy with carbon capture and storage), alongside the use of biomass for heat, power, liquid fuels and, in the future, biorefining to chemicals. Several promising lignocellulosic crops are emerging that have no food role \u2013 fast-growing trees and grasses \u2013 but are well suited as bioenergy feedstocks, including Populus, Salix, Arundo, Miscanthus, Panicum and Sorghum. \u2022 Scope These promising crops remain largely undomesticated and, until recently, have had limited germplasm resources. In order to avoid competition with food crops for land and nature conservation, it is likely that future bioenergy crops will be grown on marginal land that is not needed for food production and is of poor quality and subject to drought stress. Thus, here we define an ideotype for drought tolerance that will enable biomass production to be maintained in the face of moderate drought stress. This includes traits that can readily be measured in wide populations of several hundred unique genotypes for genome-wide association studies, alongside traits that are informative but can only easily be assessed in limited numbers or training populations that may be more suitable for genomic selection. Phenotyping, not genotyping, is now the major bottleneck for progress, since in all lignocellulosic crops studied extensive use has been made of next-generation sequencing such that several thousand markers are now available and populations are emerging that will enable rapid progress for drought-tolerance breeding. The emergence of novel technologies for targeted genotyping by sequencing are particularly welcome. Genome editing has already been demonstrated for Populus and offers significant potential for rapid deployment of drought-tolerant crops through manipulation of ABA receptors, as demonstrated in Arabidopsis, with other gene targets yet to be tested. \u2022 Conclusions Bioenergy is predicted to be the fastest-developing renewable energy over the coming decade and significant investment over the past decade has been made in developing genomic resources and in collecting wild germplasm from within the natural ranges of several tree and grass crops. Harnessing these resources for climate-resilient crops for the future remains a challenge but one that is likely to be successful

    Genetical metabolomics: closing in on phenotypes

    No full text
    One of the long-standing goals in plant biology has been to link genotypic variation to natural variation in plant development and adaptive traits. From recent studies it has become clear that a complex interacting network is underlying phenotypic diversity. A major role in this regulatory mechanism is assigned to the metabolism since plants are extremely rich and variable in metabolic content profiles. Technological advances in detecting and quantifying biochemical content as well as novel experimental approaches have accelerated data generation and increased our understanding of regulatory mechanisms in plant biology. It is now clear that modern plant sciences can benefit enormously from integrated multidisciplinary approache
    • …
    corecore